آخر الأخبار

جاري التحميل ...

Remarks on Nodal Method

 


a) The terms of an element connected to a node 'χ' and stationary surface (reference) is,

Fig1(a)
Fig1(a)

 b) The term of an element between the two nodes 'χ 1and 'χ 2' i.e. between two moving surfaces is,

Fig1(b)


       No mass can be between the two nodes as due to mass there cannot be change in force as mass cannot  store potential energy.

c) All elements which are under the influence of same displacement get connected in parallel under that node indicating the corresponding displacement .

      e.g. consider the part of the system, shown in the Fig2(a).


     Here M, B and K all are under the influence of χ(t). Hence in equivalent system all of them will get  connected in parallel under the node 'χ'. Consider another example of the system shown in the Fig.3. In this system M1, Band Kall are under the influence of displacement χ1. This is because all are connected to rigid support
Fig.3


      While there is  change from χ 1 to χ 2 due to simultaneous effect of B2 and K2. So B2 and K2 are under the influence of (χ 1- χ 2). But mass M2 is under the influence of χ 2 alone. Mass cannot under be the influence of difference between displacement s. So in equivalent system the elements B1, k1 and M1, all in parallel under χ 1 while B2 and K2 in parallel between χ 1 and χ 2 and element M2 is under node χ 2 as shown in the Fig.3(a).

Fig.3(a)



about author

hamada i'm hamada rageh electrical power engineer my talent to write articles about electrical engineering and i depend on google books site to write my articles

التعليقات


اتصل بنا

إذا أعجبك محتوى مدونتنا نتمنى البقاء على تواصل دائم ، فقط قم بإدخال بريدك الإلكتروني للإشتراك في بريد المدونة السريع ليصلك جديد المدونة أولاً بأول ، كما يمكنك إرسال رساله بالضغط على الزر المجاور ...

جميع الحقوق محفوظة

your electrical home