آخر الأخبار

جاري التحميل ...

Special Case of Inverse Laplace Transform



Let us see now if the order of P(s) and Q(s) of the function F(s) is same. In such case P(s) must be divided by Q(s), to obtain the separation of F(s) as a constant term which is result of the division and the remainder polynomial P(s) having order less than Q(s).
       Now Laplace inverse of constant term is impulse function. Refer last pair in the table 1.

       While P(s)/ Q(s) can now be expressed to obtain partial fraction expansion, to get its inverse very easily.
Note : the same method is to be applied F(s) with order of numerator polynomial P(s) is greater than denominator polynomial Q(s).






about author

hamada i'm hamada rageh electrical power engineer my talent to write articles about electrical engineering and i depend on google books site to write my articles

التعليقات


اتصل بنا

إذا أعجبك محتوى مدونتنا نتمنى البقاء على تواصل دائم ، فقط قم بإدخال بريدك الإلكتروني للإشتراك في بريد المدونة السريع ليصلك جديد المدونة أولاً بأول ، كما يمكنك إرسال رساله بالضغط على الزر المجاور ...

جميع الحقوق محفوظة

your electrical home