آخر الأخبار

جاري التحميل ...

Blondel Diagram { Constant Power Circle)

       The Blondel diagram of a synchronous motor is an extension of a simple phasor diagram of a synchronous motor.
       For a synchronous motor, the power input to the motor per phase is given by,
                    Pin  = Vph Iph cosΦ                                               ............ per phase
       The gross mechanical power developed per phase will be equal to the difference between  Pin  per phase and the per phase copper losses of the winding.
                   Copper loss per phase = (Iaph)2  Ra
...                 Pm   = Vph Iph cosΦ - (Iaph)2  Ra                       .......... per phase
       For mathematical convenience let Vph = V and Iaph = I,
...                  Pm   = VI cos - I2 Ra
...                  I2 R- VI cos + P= 0
       Now consider the phasor diagram as shown in the Fig. 1.
Fig. 1
       The equation (1) represents polar equation to a circle. To obtain this circle in a phasor diagram, draw a line OY at an angle θ with respect to OA.
Fig. 2   Blondel diagram
       The circle represented by equation (1) has a centre at some point O' on the line OY. The circle drawn with centre as O' and radius as O'B represents circle of constant power. This is called Blondel diagram, shown in the Fig. 2.
       Thus if excitation is varied while the power is kept constant, then working point B while move along the circle of constant power.
       Let   O'B = Radius of circle = r
       OO' = Distant d
       Applying cosine rule to triangle OBO',
       Now OB represents resultant ER   which is Ia  Zs. Thus OB is proportional to current and when referred to OY represents the current in both magnitude and phase.
                             OB = I= I say
       Substituting various values in equation (2) we get,
                              r2 = I2 + d2 - 2dI cosΦ
       Comparing equations (1) and (3) we get,
       Thus the point O' is independent of power Pand is a constant for a give motor operating at a fixed applied voltage V.
       Comparing last term of equations (1) and (3),
       The equation shows that as power Pmust be real, then 4Pm Ra  ≥ V2 . The maximum possible power per phase is,
       And the radius of the circle for maximum power is zero. Thus at the time of maximum power, the circles becomes a point O'.
While when the power   Pm   = O, then
                                        r = V/2Ra    = OO'
       This shows that the circle of zero power passes through the points O and A.
       The radius for any power Pis given by,
 This is generalised expression for the radius for any power.

Sponsored links :

about author

hamada i'm hamada rageh electrical power engineer my talent to write articles about electrical engineering and i depend on google books site to write my articles

التعليقات


اتصل بنا

إذا أعجبك محتوى مدونتنا نتمنى البقاء على تواصل دائم ، فقط قم بإدخال بريدك الإلكتروني للإشتراك في بريد المدونة السريع ليصلك جديد المدونة أولاً بأول ، كما يمكنك إرسال رساله بالضغط على الزر المجاور ...

جميع الحقوق محفوظة

your electrical home