آخر الأخبار

جاري التحميل ...

E.M.F Equation of aTransformer

       When the primary winding is excited by an alternating voltage V1, it circulates alternating current, producing an alternating flux Φ. The primary winding has N1 number of turns. The alternating flux Φ linking with the primary winding itself induces an e.m.f in it denoted as E1. The flux links with secondary winding through the common magnetic core. It produces induced e.m.f. E in the secondary winding. This is mutually induced e.m.f. Let us derive the equations for E1 and E2.
       The primary winding is excited by purely sinusoidal alternating voltage. Hence the flux produced is also sinusoidal in nature having maximum value of Φm as show in the Fig. 1.
Fig.  1  Sinusoidal flux
       The various quantities which affect the magnitude of the induced e.m.f. are : 
                         Φ = Flux
                         Φm = Maximum value of flux
                         N1 = Number of primary winding turns
                         N2 = Number of secondary winding turns
                         f = Frequency of the supply voltage
                         E1 = R.M.S. value of the primary induced e.m.f.
                         E2 = R.M.S. value of the secondary induced e.m.f.
       From Faraday's law of electromagnetic induction the voltage e.m.f. induced in each turn is proportional to the average rate of change of flux.
...      average e.m.f. per turn = average rate of change of flux
...      average e.m.f. per turn = dΦ/dt
Now                 dΦ/dt = Change in flux/Time required for change in flux
       Consider the 1/4 th cycle of the flux as shown in the Fig.1. Complete cycle gets completed in 1/f seconds. In 1/4 th time period, the change in flux is from 0 to Φm.
...                  dΦ/dt = (Φm - 0)/(1/4f)           as dt for 1/4 th time period is 1/4f seconds
                              = 4 f  Φm       Wb/sec      
...    Average e.m.f. per turn =  4 f Φm   volts
       As is sinusoidal, the induced e.m.f. in each turn of both the windings is also sinusoidal in nature. For sinusoidal quantity,
       From factor = R.M.S. value/Average value = 1.11
...    R.M.S. value of induced e.m.f. per turn 
                        = 1.11 x 4 f Φm = 4.44 f Φm
        There are number of primary turns hence the R.M.S value of induced e.m.f. of primary denoted as is E1,
                    E1 = N1 x 4.44 f  Φm      volts
       While as there are number of secondary turns the R.M.S values of induced e.m.f. of secondary denoted is E2 is,
                   E2 = N2 x 4.44 f Φm         volts
       The expression of E1 and E2 are called e.m.f. equation of  a transformer.
       Thus e.m.f. equations are,
                  E1 = 4.44 f ΦN1              volts             ............(1)
                  E2 = 4.44 f  Φ N2             volts             .............(2)

Sponsored links :

about author

hamada i'm hamada rageh electrical power engineer my talent to write articles about electrical engineering and i depend on google books site to write my articles

التعليقات


اتصل بنا

إذا أعجبك محتوى مدونتنا نتمنى البقاء على تواصل دائم ، فقط قم بإدخال بريدك الإلكتروني للإشتراك في بريد المدونة السريع ليصلك جديد المدونة أولاً بأول ، كما يمكنك إرسال رساله بالضغط على الزر المجاور ...

جميع الحقوق محفوظة

your electrical home